Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 162: 104025, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37813200

RESUMO

Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain homeostasis in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, Drosophila suzukii, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide binding affinities. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both cAMP and Ca2+ as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in D. suzukii adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly diuresis. These findings provide fundamental insights into the characterization of D. suzukii DH31 and DH31-Rs, and facilitate the identification of potential biological targets for D. suzukii management.


Assuntos
Drosophila , Neuropeptídeos , Animais , Drosophila/metabolismo , Diuréticos/metabolismo , Sistemas do Segundo Mensageiro , Receptores Acoplados a Proteínas G/metabolismo , Neuropeptídeos/metabolismo , Diurese , Hormônios/metabolismo
2.
Pest Manag Sci ; 79(12): 4990-5002, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37540766

RESUMO

BACKGROUND: Spotted-wing drosophila, Drosophila suzukii, is an economic pest of small fruits and cherries. Insecticides primarily control this pest while alternative controls are in development. Laboratory studies show that erythritol is insecticidal to D. suzukii and other pests while approved for human consumption. Moreover, erythritol combined with sucrose or non-caloric sucralose can stimulate feeding and quicken mortality. Before growers can use erythritol, the impact on crop protection, non-target insects, and fruit quality need evaluation. RESULTS: In three blueberry and cherry field cage trials, oviposition on fruit sprayed with erythritol:sucrose or erythritol:sucralose formulations was lowered by 59%-81% compared with unsprayed controls. Fly infestation (larval or adult counts from fruit) was 90% lower in a greenhouse blueberry trial, and 49% lower in an open field blueberry trial with 2 m erythritol : 0.5 m sucrose. Infestation was also 57% lower in an open field cherry trial with 1.5 m erythritol:0.5 m sucrose. Other field trials with very low pest pressure or frequent rains revealed no differences from controls. Field trials consistently revealed that honey bees did not preferentially visit plants sprayed with either erythritol formulation, although yellow jackets visited plants sprayed with erythritol:sucrose more frequently. Erythritol formulations consistently led to more leaf spotting, but there was no reduction in the quality of treated blueberries or cherries in terms of mold development, firmness, diameter, epidermal penetration force, and Brix° (total soluble solids) at harvest. CONCLUSION: Eleven trials conducted over four years show that erythritol formulations can reduce D. suzukii pressure without attracting foraging honey bees nor negatively impacting fruit quality. © 2023 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Mirtilos Azuis (Planta) , Inseticidas , Feminino , Abelhas , Humanos , Animais , Frutas , Drosophila , Eritritol , Inseticidas/farmacologia , Sacarose/farmacologia , Controle de Insetos
3.
Insect Mol Biol ; 32(6): 603-614, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37265417

RESUMO

Insect CAPA-PVK (periviscerokinin) and pyrokinin (PK) neuropeptides belong to the PRX family peptides and are produced from capa and pyrokinin genes. We identified and characterised the two genes from the western flower thrips, Frankliniella occidentalis. The capa gene transcribes three splice variants, capa-a, -b, and -c, encoding two CAPA-PVKs (EVQGLFPFPRVamide; QGLIPFPRVamide) and two PKs (ASWMPSSSPRLamide; DSASFTPRLamide). The pyrokinin mRNA encodes three PKs: DLVTQVLQPGQTGMWFGPRLamide, SEGNLVNFTPRLamide, and ESGEQPEDLEGSMGGAATSRQLRTDSEPTWGFSPRLamide, the most extended pheromone biosynthesis activating neuropeptide (PBAN) ortholog in insects. Multiple potential endoproteolytic cleavage sites were presented in the prepropeptides from the pyrokinin gene, creating ambiguity to predict mature peptides. To solve this difficulty, we used three G protein-coupled receptors (GPCRs) for CAPA-PVK, tryptophan PK (trpPK), and PK peptides, and evaluated the binding affinities of the peptides. The binding activities revealed each subfamily of peptides exclusively bind to their corresponding receptors, and were significant for determining the CAPA-PVK and PK peptides. Our biological method using specific GPCRs would be a valuable tool for determining mature peptides, particularly with multiple and ambiguous cleavage sites in those prepropeptides. Both capa and pyrokinin mRNAs were strongly expressed in the head/thorax, but minimally expressed in the abdomen. The two genes also were clearly expressed during most of the life stages. Whole-mounting immunocytochemistry revealed that neurons contained PRXamide peptides throughout the whole-body: four to six neurosecretory cells in the head, and three and seven pairs of immunostained cells in the thorax and abdomen, respectively. Notably, the unusual PRXamide profiles of Thysanoptera are different from the other insect groups.


Assuntos
Tisanópteros , Animais , Tisanópteros/metabolismo , Sequência de Aminoácidos , Peptídeos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Insetos/metabolismo
4.
Environ Entomol ; 52(1): 47-55, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36383202

RESUMO

Drosophila suzukii Matsumura, spotted-wing drosophila, is a major pest of small fruits and cherries and often managed with conventional insecticides. Our previous work found that erythritol, a nonnutritive polyol, has insecticidal properties to D. suzukii. Two formulations of erythritol (1.5M), with 0.5M sucrose or 0.1M sucralose, are most effective at killing D. suzukii. In this study, we investigated the nontarget effects of these erythritol formulations on honey bee Apis mellifera Linnaeus larvae, a pupal parasitoid of D. suzukii, Pachycrepoideus vindemiae Rondani, and western yellow jacket, Vespula pensylvanica Saussure. We directly exposed honey bee larvae by adding a high dose (2 µl) to larval cells and found no significant mortality from either formulation compared to the water control. Pachycrepoideus vindemiae may encounter erythritol in field settings when host plants of D. suzukii are sprayed. The erythritol+sucralose formulation was more detrimental than erythritol+sucrose to P. vindemiae, however, this effect was greatly reduced within a 21-d period when a floral source was present. Since yellow jackets are a nuisance pest and were attracted to the erythritol formulations in recent field trials, we tested adult V. pensylvanica survival with continuous consumption of these formulations in the laboratory. We found no detectable detriment from either formulation, compared to the sucrose control. Overall, both erythritol formulations caused minimal nontarget effects on honey bee larvae, P. vindemiae parasitoids, and western yellow jackets.


Assuntos
Inseticidas , Vespas , Abelhas , Animais , Drosophila , Larva , Pupa , Açúcares , Inseticidas/toxicidade , Eritritol/farmacologia , Sacarose/farmacologia , Controle de Insetos
5.
Arch Insect Biochem Physiol ; 109(2): e21860, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34865250

RESUMO

The nonnutritive sugar, erythritol, has the potential to be a human-safe management tool for the small fruits and cherry pest, Drosophila suzukii, or spotted-wing drosophila. Feeding on erythritol decreases fly survival and oviposition by starving and creating an osmotic imbalance in the body. Recently, we demonstrated that erythritol combined with another nonnutritive sugar, sucralose, was fed upon more than erythritol alone and hastens D. suzukii mortality. This suggests that sucralose is a suitable nonnutritive phagostimulant alternative to sucrose. Although promising, the nutritional and physiological impacts of sucralose on D. suzukii are unknown. In this study, we investigated whether sucralose is metabolized or excreted by D. suzukii when fed various erythritol, sucrose, and sucralose formulations. We found that sucralose cannot be metabolized or converted into any nutritional substitutes or storage carbohydrates in D. suzukii. Instead, sucralose molecules were largely accumulated in the hemolymph and slowly excreted from the body, creating a significant osmotic imbalance in D. suzukii. To excrete unused sugars, flies will use their own body fluids to restore homeostasis, resulting in losing a substantial amount of body weight and becoming desiccated in the process. In summary, ingesting sucralose leads to starvation and hyperosmotic pressure in the body, causing a decrease in fitness. With confirmation of sucralose being non-metabolizable and phagostimulative to D. suzukii, the erythritol+sucralose formulation is a promising insecticide for growers to use.


Assuntos
Líquidos Corporais , Drosophila , Animais , Eritritol , Feminino , Controle de Insetos , Lipídeos , Açúcares
6.
PLoS One ; 14(7): e0218301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31335864

RESUMO

Pachycrepoideus vindemmiae is a wasp that parasitizes and host-feeds on pupae of the invasive spotted-wing drosophila (SWD, Drosophila suzukii). Few studies have addressed interactions between these two species and little is known about the potential of this parasitoid as a biocontrol agent of SWD and the different variables that may affect it. Here, we investigated the impact of extrinsic and intrinsic factors on life-history traits of P. vindemmiae. Both constant (entire adulthood) and limited (30 minutes) supplies of water + honey, honey, or host increased parasitoid survival compared to controls (water or fasting). Water + honey caused the highest parasitoid survivals (35-60 days), independent of supply period, sex, and host availability. Females were intrinsically more resistant to water- and honey-deprivation than males, and host-feeding elevated such resistance even higher. Constant honey supply (either with or without water) supported the highest host-killing capacities (= capacity to kill hosts) (ca. 600 SWD pupae/wasp). However, in young females (4-9 days old), the impact of honey availability (with or without water) was insignificant while water deprivation (either with or without honey) caused the highest host-killing potential. This indicates that although sugar becomes a critical nutritional resource as females age, young females depend more on water than sugar to reproduce. Neither water nor honey affected the sex ratio of young females, but when we considered the entire adulthood, the availability of honey caused the lowest proportion of females (0.50), independent of water availability. Neither water nor honey affected parasitoid emergence rate (0.97), independent of female age. Based on survival and host-killing capacity, we conclude that P. vindemmiae has a tremendous biocontrol potential against SWD. Both limited and constant supply of water, sugar, and host increase parasitoid survival, while constant supply of water and/or honey enhance its host-killing potential and decrease sex ratio depending on maternal age.


Assuntos
Drosophila/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Himenópteros/patogenicidade , Reprodução/fisiologia , Animais , Drosophila/metabolismo , Drosophila/fisiologia , Feminino , Mel , Himenópteros/metabolismo , Himenópteros/fisiologia , Masculino , Pupa/parasitologia , Pupa/fisiologia , Razão de Masculinidade , Açúcares/metabolismo , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...